Got a brain injury question? Ask an expert on March 13

Public invited to “Ask the Brain Injury Experts” event

Brain Injury Awareness Month bundle_FB post hUnlike a wrist or ankle fracture where a cast, splint or minor surgery can help return function back to “normal,” an injury to the brain can present unique challenges. No two brain injuries are alike; recovery and treatment recommendations are based on the severity of the injury and other factors – and can have life-changing effects.

Hennepin Healthcare’s Traumatic Brain Injury (TBI) Center cares for more than 3,000 patients each year, providing a full range of state-of-the-art medical and rehabilitative services from prevention to emergency care, neurosurgery, critical care, rehabilitation and the Traumatic Brain Injury Outpatient Program.

Experts from many of those services will be available to answer questions in person at the “Ask the Brain Injury Experts” event on Wednesday, March 13 from noon-1pm at the M. Stillman Education and Community Center located on the first floor of the Hennepin Healthcare Clinic & Specialty Center. A live Twitter chat will also take place during that time so anyone who cannot attend in person can ask questions using the hashtags #TBIMonth and #TBIChat to @hennepinhc.

What:              Ask the Brain Injury Experts
When:             Wednesday, March 13, 2019 from noon to 1pm
Where:            Hennepin Healthcare Clinic & Specialty Center
715 S. 8th St. Mpls., MN 55404, 1st Floor M. Stillman Education and Community Center (Parking is available beneath the building.)

Throughout the month of March the TBI Center is sponsoring educational events for the public to raise awareness about traumatic brain injury. Although they are free, some of these events require registration. More information is available at  hennepinhealthcare.org/tbimonth 

Each year, more than 2.5 million Americans sustain a traumatic brain injury (TBI). Among children and young adults, TBI is the leading cause of death and disability. In Minnesota, nearly 100,000 brain injuries occur annually. A large percentage of those injuries are mild to moderate cases and often go untreated. As a Level I Trauma Center, Hennepin Healthcare admits and treats the most traumatic brain injuries in the state. For more information about TBI programs and services, go to hennepinhealthcare.org/tbi

 

Minnesota Spinal Cord & Traumatic Brain Injury Research Symposium kicks off during Super Bowl week

msct logo
More than 10,500 Minnesotans are living with paralysis from a spinal cord injury and 100,000 are living with disabilities from brain injury. No matter what the cause – whether it’s from a slip on the ice, a ladder fall or a car crash – these injuries are life-changing for patients and their families.

On Wednesday, January 31, 2018 from 1:00-5:00pm the first annual Minnesota Spinal Cord & Traumatic Brain Injury Research Symposium will showcase new and innovative research funded by the Minnesota Office of Higher Education Grant Program. The Grant Program funds research to discover treatment and rehabilitation with the aim of improving function in people with spinal cord and traumatic brain injuries. The Symposium takes place at the new HealthPartners Neuroscience Center, 295 Phalen Blvd. in St. Paul.

“Without a doubt, the path to hope for these courageous patients is research,” explains neurosurgeon Uzma Samadani, M.D., Ph.D., Rockswold Kaplan Endowed Chair for TBI Research at Hennepin County Medical Center (HCMC), one of the moderators at the Symposium. “As a researcher, surgeon and clinician, it’s truly an honor to uncover interventions that will make an impact on the way we diagnose and treat these types of injuries.”

The Minnesota Brain Injury Alliance and Get Up Stand Up to Cure Paralysis worked with Minnesota legislators in July of 2015 to pass funding legislation for this program. Funding is split 50/50 between research focused on spinal cord injuries and traumatic brain injuries. To date 21 research projects have been funded and will be showcased at the symposium along with select patient testimonials. In the next two years the Grant Program will award a total of $6 million for research.

Senator John Hoffman and Representative Tony Albright, who supported the legislation, will open the symposium followed by researchers from the Mayo Clinic, Hennepin County Medical Center, University of Minnesota and the Minneapolis VA Health Care System. In addition, speakers from Prevent Biometrics and TackleBar football will address current issues surrounding concussions.

Collaborative Minnesota partnerships like the ones featured at the Minnesota Spinal Cord & Traumatic Brain Injury Research Symposium are leading the way toward critical medical discoveries. For more information go to www.mnscitbiresearch.com/

comprehensive

 

 

Eye tracking detects high pressure inside the skull

Contact: Christine Hill 612.873.5719

Doctors Can Detect Pressure Increases Inside the Skull By Tracking Eye Movements During Watching of Music Videos

IMG_6448
Dr. Uzma Samadani

Eye movement tracking while watching a music video for 220 seconds can reveal whether there is increased pressure inside the skull.  The technology works by measuring the function of the nerves that rotate the eyeball.  “Doctors have known for more than 3000 years that high pressure inside the skull impairs the function of these delicate nerves, and that the first to be affected is usually the nerve that rotates the eye laterally” said neurosurgeon Dr. Uzma Samadani, the lead study investigator.

Participants in the National Space and Biomedical Research Institute (NSBRI) funded study were 23 patients in the neurosurgical intensive care unit who were awake but had brain problems such as bleeding, trauma, stroke or tumors requiring intracranial pressure monitoring with a drainage catheter.  On 55 occasions the patients watched music videos and Disney film clips while an eye tracking camera measured vertical and horizontal eye movements for 220 seconds.   There was a correlation between increased intracranial pressure and decreased function

DSC_8959 (1)
During a recent visit NASA astronaut Kjell Lindgren, MD (who received his medical training at HCMC), was given a demonstration of the eye-tracking technology.

 of the nerves moving the eye as detected with eye tracking.  Decreased lateral eye movements showed the strongest correlation with elevated intracranial pressure, consistent with what has long been known about nerve function.  Individual patients had normal tracking at lower pressures and decreased eye movement at higher pressures regardless of whether the high or low pressure occurred first.

Dr. Samadani, who is the Rockswold Kaplan Endowed Chair for Brain Injury Research at Hennepin County Medical Center as well as an Associate Professor at the University of Minnesota Medical School, noted that concussion and elevated intracranial pressure impact many of the same eye tracking metrics, suggesting that similar pathways may be impaired.

Study results were presented at a joint NASA/NSBRI research group meeting and are now published in the Journal of Neurosurgery.  The company Oculogica Inc has licensed exclusive world-wide rights for commercialization of the technology, for which a patent was issued earlier this month.

NSBRI funded the eye tracking research as a grant to the company Oculogica Inc through the SMARTCAP program which supports commercialization of technologies that will have utility both in space and on earth.  Eye tracking for detection of elevated intracranial pressure could potentially benefit 7 million Americans with hydrocephalus as well as have utility for concussion and other types of brain injury.  One potential indication for eye tracking would be identification of concussed subjects at high risk for second impact syndrome, which is thought to occur after, and further contribute to high intracranial pressure, which can be fatal.

NSBRI has a program investigating technologies for non-invasive monitoring of intracranial pressure which can potentially be elevated during space travel.  Astronauts who experience reduced gravity for prolonged periods of time are at risk for developing headaches and visual problems.  It is thought that without gravity, there is increased pooling of blood in the brain and elevated pressures inside the skull and eye structures.  This risk for elevated intracranial pressure impacts NASA’s plan for prolonged space travel.  Untreated elevated intracranial pressure can lead to cognitive difficulty and vision problems including blindness.  On earth, doctors currently drill holes into the skull to place monitors to measure this pressure in patients with trauma, bleeding in the brain, or certain tumors.  In space, such a measurement is not feasible, necessitating non-invasive measurement.

Dr. Samadani is a founder of the company Oculogica Inc., which is currently applying for FDA clearance for the eye tracking technology, called EyeBox.  She disclosed that she, New York University, the Department of Veterans Affairs and Hennepin County Medical Center all had equity interests in the company.

Visit HCMC at the Fair for hands-on health activities, eye-opening research

cropped more state farijpgHennepin County Medical Center (HCMC), Minnesota’s first Level I Adult and Pediatric Trauma Center is at the Minnesota State Fair during the best days of summer with hands-on health activities in the Health Fair 11 Building, located at the corner of Dan Patch Avenue and Cooper Street.

The fun begins on the first day of the Fair when kids are invited to try hands-on medical play activities including finger casting, play stitching, ultrasounds and more. Daily attractions include Bernie the Rescue Dog, HCMC’s mascot, who will be at the booth from 10am to 2pm as well as MVNA nurses who will offer flu shots and free blood pressure checks.

One of the unique daily features taking place at HCMC’s booth is the opportunity to participate in the Minnesota Healthy Brain Initiative research study. Participants complete a questionnaire, then watch a music video while their eyes movements are watched and measured using a tracking camera.

“Data have shown a connection between brain injury and abnormal eye movements,” explains neurosurgeon Uzma Samadani, M.D., Ph.D., the Rockswold Kaplan Endowed Chair for TBI Research at HCMC, who is also an associate professor at the University of Minnesota. “We’re so excited to have Fairgoers help with this research that will eventually be used to develop life-changing diagnostic and treatment methods.”

Dr. David Hilden, host of the Healthy Matters radio program heard every Sunday morning
on WCCO Radio will answer health questions from a live audience at the WCCO Radio booth on August 28 and September 4 from 7:30 to 8:30am. On August 28, Dr. Samadani will join Dr. Hilden on his show to briefly discuss the eye-tracking research.

For a full list of the exciting activities HCMC is offering at the 2016 Minnesota State Fair, go to hcmc.org/statefair.

This slideshow requires JavaScript.

Researchers at HCMC awarded grants for Traumatic Brain Injury and Spinal Cord Injury

Last year the Minnesota State Legislature established the Spinal Cord Injury and Traumatic Brain Injury Research Grant Program (136A.901).   The grants support research into new and innovative treatments and rehabilitative efforts for functional improvement of people with spinal cord and traumatic brain injuries. The first research grants were announced January 25, and three out of four of the new grants were awarded to researchers at Hennepin County Medical Center (HCMC). Continue reading “Researchers at HCMC awarded grants for Traumatic Brain Injury and Spinal Cord Injury”

Eye Tracking Has High Sensitivity as a Biomarker for Concussion

Dr. Uzma Samadani
Dr. Uzma Samadani

Eye Tracking Detects Concussion with Sensitivity Comparable to that of Blood Tests for Heart Attack

New technology that tracks the eye movements of patients may be a more accurate measure of brain injury than any other diagnostic measurements currently in use, according to a study published in the journal Concussion. Dr. Uzma Samadani, who recently joined Hennepin County Medical Center, in collaboration with researchers at the Steven and Alexandra Cohen Veterans Center at NYU Langone Medical Center, developed the technology that can serve as a biomarker for concussion by tracking patients’ eye movements as they watch music videos.  

Eye tracker device demonstrated by subject
Subject participating in eye tracking study

The eye tracking technology works by having patients watch a music video for 220 seconds while eye movements are measured using a tracking camera.  Videos used in the study ranged from Disney’s Puss in Boots to Wavin Flag by K’Naan.  Multiple measures of each eye’s movement, followed by comparisons of their positions over time are used to distinguish between normal subjects and those with concussion.

In the work, led by Uzma Samadani, MD PhD, Charles Marmar, MD, and Eugene Laska PhD, the investigators built a classifier based on 34 emergency room patients with brain injury and 34 uninjured healthy control subjects of similar age. A classifier is a mathematical model that converts a patient’s eye movement measures into a prediction of the concussive status of the individual. They then tested the models on a dataset of 255 subjects, of whom 8 had concussions, and found that the eye tracking test had an optimal sensitivity of 88% and specificity of 87%.

Typically, a classifier produces a score and a subject is classified as having a concussion if the score exceeds a predefined threshold value. The accuracy of a biomarker is measured by plotting the probability of a true versus false positivity at each possible threshold value and the Area Under the Curve (AUC) is computed. A perfect biomarker has an AUC of 1.00, while a worthless marker – no better than the chance toss of a coin – has an AUC of 0.50.  Most tests used clinically have AUC’s greater than 0.80.  For example, serum troponin, the most commonly performed blood test for heart attacks has an AUC ranging in various studies from 0.76 to 0.96.  In this study, the eye tracking based classifier had an AUC of 0.88, and a cross-validated AUC of 0.85.

According to Dr. Samadani, the major challenge for any technology proposed as a biomarker for concussion is first defining concussion.  “When doctors look for a biomarker for heart attack, it is relatively easy to check the accuracy of a potential candidate because they can perform a cardiac catheterization and confirm that the heart vessel is blocked and an attack has occurred.  There is no analogous capability with brain injury – there is no gold standard diagnostic, no blood test, and no imaging study for definitively concluding that a patient has experienced a concussion.  We use symptom severity scales and standardized cognitive examination assessments but the imperfect nature of these may result in incorrect subject classification. Potentially, eye tracking may be more accurate than it appears, because of its objective appraisal of a complicated process of coordination that may be impaired.”

The investigators defined concussion as (1) trauma to the head with a normal CT (computed tomography) scan of the brain, (2) symptom severity score of 40 or greater on SCAT3 testing and (3) standardized assessment of concussion (SAC) score less than 24.  The symptom severity score measures the self-reported severity of 22 concussion symptoms ranging from headache to dizziness and irritability.  The SAC measures orientation, memory, and concentration – capabilities which have some variability even among uninjured healthy control subjects.

In an accompanying editorial that also appears in the journal, Dr. Samadani proposes that eye tracking will help diagnose and classify brain injury and concussion, particularly in patients with elevated pressure inside their skulls and disruption of pathways in the brain that control eye movements.

“The ultimate goal for brain injury” said Dr. Samadani, “is to achieve the same level of diagnostic capability and care as currently exists for other medical conditions.  Right now when someone comes in to the emergency room with chest pain, doctors perform an EKG, blood test, imaging, and treatment.  With brain injury we need to be able to achieve the same level of care – to assess all aspects of the problem rigorously, classify, and treat accordingly.  We already know that there is much more to brain injury than what is seen on a CT scan.  Eye tracking tells us how well the brain is working regardless of how it looks, and represents the beginning of a solution to this problem.  It is non-invasive, inexpensive and extremely quick.  Testing does not require reading nor language skills which makes it useful for multiple patient populations.”

Commenting further on the study was Dr. David Cifu, the Herman J. Flax, M.D. Professor and Chair of Rehabilitation at Virginia Commonwealth University, Senior TBI Specialist with the U.S. Department of Veterans Affairs and Principal Investigator of the VA/Department of Defense Chronic Effects of NeuroTrauma Consortium.

“This innovative research by Samadani and colleagues highlights a novel approach to objectively and rapidly support the diagnosis of acute concussion using a novel technique of assessing eye tracking. This publication may represent the first step in the development of a more exacting method of diagnosing and monitoring recovery from traumatic brain injury. Computerized assessment of eye tracking may represent the first truly useful biomarker of TBI.”

Brain injury is the number one cause of death and disability in Americans under age 35, according to the U.S. Centers for Disease Control and Prevention. Every year, 1.4 million people suffer from a traumatic brain injury in the United States. Of those, 50,000 die and 235,000 require hospital admission.  Internationally it is a leading cause of death in India and China where access to radiographic diagnostics is also limited.

Dr. Samadani is the Rockswold Kaplan endowed chair for traumatic brain injury at Hennepin County Medical Center and an Associate Professor of Neurosurgery at the University of Minnesota.  Dr. Marmar is the Lucius N. Littauer Professor and Chair of the Department of Psychiatry at NYU Langone Medical Center and Director of its Cohen Veterans Center. Dr. Laska is a statistician at the Nathan Kline Institute for Psychiatric Research and a Research Professor of Psychiatry at the NYU School of Medicine.  Other co-authors of this study include Meng Li MA, Meng Qian PhD, Robert Ritlop M Eng, Radek Kolecki MS, Marleen Reyes BA, Lindsey Altomare BA, Je Yeong Sone, Aylin Adem, Paul Huang MD, Douglas Kondziolka MD, Stephen Wall MD, and Spiros Frangos MD. Technology described in this paper has been licensed to Oculogica Inc., a neurodiagnostic startup company in which NYU, Dr. Samadani and Robert Ritlop have an equity interest.

The work was supported in part by the Steven & Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury at NYU Langone.

Internationally recognized neurosurgeon Dr. Uzma Samadani joins HCMC

SAMADANI_UZMA_photoDr. Uzma Samadani, whose research on concussion recently made headlines around the world, is joining the Department of Neurosurgery at Hennepin County Medical Center (HCMC), a nationally recognized Level I Adult and Pediatric Trauma Center that specializes in the treatment of traumatic brain injuries. She will serve as the Rockswold Kaplan Chair for Traumatic Brain Injury Research, and also be appointed an Associate Professor of Neurosurgery at the University of Minnesota. Continue reading “Internationally recognized neurosurgeon Dr. Uzma Samadani joins HCMC”